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What is data assimilation?

You use a kind of data assimilation scheme if you sneeze whilst
driving along the motorway.
As your eyes close involuntary; you retain in your mind a picture of
the road ahead and traffic nearby [background],
as well as a mental model of how the car will behave in the short
time [dynamical system]
before you reopen your eyes and make a course correction
[adjustment to observations].

O’Neil et al (2004)
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Predicting the state of the atmosphere, of the ocean

The state of the atmosphere or the ocean (the system) is
characterized by state variables that are classically designated as
fields:

velocity components

pressure

density

temperature

salinity

A dynamical model predicts the state of the system at a time given
the state of the ocean at a earlier time. We address here this
estimation problem. Applications are found in climate,
meteorology, ocean,... forecasting problems. Involving large
computers and nearly real-time computations.
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Predicting the state of the atmosphere of the ocean

The fundamental properties of the system appear in the model as
parameters:

viscosities

diffusivities

rates of earth-rotation

The initial and boundary conditions necessary for integration of the
dynamical model may also be regarded as parameters.
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Optimal control problem

The fundamental problem of optimal control reads:

Definition

Find the control u (initial state parameters) out of a set of admissible controls
U which minimizes the cost functional

J =

Z t1

t0

F (t, x, u)dt

subject to

ẋ = f(t, x, u), with x0 depending on u
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DA as an optimal control problem

Since the problem of DA is to bring the model state closer to a given set
observations, this may be expressed in terms of minimizing:

J =

Z t1

t0

(H(x)− y)TR−1(H(x)− y)dt

subject to

ẋ = f(t, x, u)

or in discrete form (that we will consider for the rest)

J =
NX
i=0

(H(xi)− yi)
TR−1(H(xi)− yi)

subject to

xi =M(t,x0,u)
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High performance computing point of view

The simplest instance of a DA problem is a linear
least-squares problem

Typical sizes would be for this problem 107 unknowns and
2 · 107 observations (including a priori information)

The problem is not sparse

If no particular structure taken into account, the solution of
the problem on a modern (3 · 109 operations/s) computer
would take 200 centuries of computation by the normal
equations

In terms of memory, working with the matrix in core memory
of a computer not practicable

Therefore iterative methods are used on parallel computers
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Regularization technique

If all mapping involved in the problem where linear, the data
assimilation problem would often result

in a linear least squares problem with more unknown than
equations

in a very ill-conditioned problem

A regularization technique is often needed. This is done using the
background information

J (x0) =
1
2
‖x0 − xb‖2B−1 +

1
2

N∑
i=0

‖Hi(xi)− yi‖2R−1
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A vibrating string

We consider a vibrating string, hold fixed at both ends

It is released with a zero initial speed, from an unknown
position

The string remains in the vertical plane

The string is observed with a set of physical devices measuring
the position string at regularly spaced points during a given
time span

We would like to make a
forecast of the string position outside the observation time span

Observations
10

x

u(x)
String
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A vibrating string : the model

The string position u(x) is the solution of the partial
differential equation

∂2

∂t2
u(x, t)− ∂2

∂x2u(x, t) = 0 in]0, 1[×]0, T [
u(0, t) = u(1, t) = 0, t ∈]0, T [
u(x, 0) = u0(x), ∂

∂tu(x, 0) = 0, x ∈]0, 1[

Under regularity assumptions on u0, this system has one
unique solution

We suppose that the system is observed at times tn

The problem reads minu0

∑Nobt
n=0 ‖yn − u(:, tn)‖2

This is an infinite dimensional linear least squares problem,
that has to be discretized to be solved on a computer.
Discretize then minimize.
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The observations

We consider now that the string is observed regularly in time
and space. No noise, more observations than unkonwns.

The discretized version of linear least-squares problem
minu0

∑Nobt
n=0 ‖yn − Un‖2 is solved with a conjugate gradient

technique

→ test(’over’)

Very good agreement between truth an analysis
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Realistic difficult case

In practice, observing a 3D field at all space points is out of
reach

The observations are noisy, which introduces high frequencies
in the analysis

Both effects (always) come together

→ test(’under-noisy’)
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Exploiting ”a priori” information

We do not consider the previous solution acceptable, because
we doubt a string might take such positions. We expect the
solution to be smooth enough

We would like to introduce the fact that the string position
should not vary too much when considering points that are
close in the physical space

purely algebraic approach, e.g.
minu0

∑Nobx

j=0
1
σ |u

0
j − u0

j+1|2 +
∑Nobt

n=0 ‖yn − Un‖2

using a pseudo-physical smoothing process

Sum of background (a priori) term and observation term

Gurol, Toint, Tshimanga, Weaver Data Assimilation: concept and some algorithms



Introduction
Reduced space Krylov methods

Acceleration techniques for nonlinear-least squares (optional)

The forward problem
Control theory
An academic example

Smoothing in the discretized space with the heat equation

We consider the discretized heat equation
∂
∂tu(x, t)−

∂2

∂x2u(x, t) = 0 in]0, 1[×]0, T [
u(0, t) = u(1, t) = 0, t ∈]0, T [
u(x, 0) = u0(x), ∂

∂tu(x, 0) = 0, x ∈]0, 1[

For a given T , u(., T ) is smoother than u0, because high
frequency terms get strongly damped.

→ simul heat
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Eigenbasis of few steps in the heat equation

Quickly decaying spectrum

The resulting matrix writes B = UDUT , where U is
orthonormal

The Fourier components of any u in this basis are the entries
of UTu
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Application to the Data Assimilation problem

A smooth vector u has most of its energy on the ”largest”
eigenvectors of B : uTBx = (Uu)TD(Uu) is large

A high-frequency vector has most of its energy on the
”smallest” eigenvectors of B : uTB−1u = (Uu)TD−1(Uu) is
large

We introduce the penalization of high frequencies with respect
to a guess Ub, called the background :
minU0

1
2‖U

0 − Ub‖2B−1 + 1
2

∑Nobt
n=0 ‖yn − Un‖2R−1 , where R is

the covariance matrix of the observation errors

This is the 4D-Var functional
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Back on the realistic difficult case

Underdetermined case

→ test(’under-reg’)

Noisy case

→ test(’noisy-reg’)

Underdetermined and noisy case

→ test(’under-noisy-reg’)
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Issues on background regularization

The modelling enables to introduce a physical process to
determine the background, and make the parameterization of
the background error covariance matrix easy. Background
matrix mat-vec in CG : another differential equation has to be
solved

In case of modeling,when a direct solution not applicable, an
inner-outer iteration scheme has to be controlled

Determining a reasonable background matrix : based on
physical considerations, possibly on statistics over past
assimilation periods

Introduction of balanced relations in the background : when
variables are related to each other by relations that are not
accounted for in the model and not properly observed, an
additional (weak) penalty term is added
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Four-Dimensional Variational (4D-Var) formulation

→ Very large-scale nonlinear weighted least-squares problem:

min
x∈Rn

f(x) =
1

2
||x− xb||2B−1 +

1

2

NX
j=0

||Hj(Mj(x))− yj ||2R−1
j

where:

Size of real (operational) problems: x, xb ∈ R106
, yj ∈ R105

The observations yj and the background xb are noisy

Mj are model operators (nonlinear)

Hj are observation operators (nonlinear)

B is the covariance background error matrix

Rj are covariance observation error matrices
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Incremental 4D-Var

Let rewrite the problem as:

min
x∈Rn

f(x) =
1

2
||ρ(x)||22

Incremental 4D-Var is an inexact/truncated Gauss-Newton algorithm:

It linearizes ρ around the current iterate x̃ and solves

min
x∈Rn

1

2
‖ρ(x̃) + J(x̃)(x− x̃)‖22

where J(x̃) is the Jacobian of ρ(x) at x̃

It thus solves a sequence of linear systems (normal equations)

JT (x̃)J(x̃)(x− x̃) = −JT (x̃)ρ(x̃)

where the matrix is symmetric positive definite and varies along the
iterations
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Context

We want to find the minimizer x(t0) of the 4D-Var functional

J [x(t0)] =
1
2
(x(t0)− xb)TB−1(x(t0)− xb)

+
1
2

p∑
j=0

(Hj(x(tj))− yo
j )

TR−1
j (Hj(x(tj))− yo

j ),

where
x(tj) =Mj,0(x(t0));
B : background-error covariance matrix;
Rj : observation-error covariance matrices,
Hj : maps the model field at time tj to the observation space.
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Incremental 4D-Var Approach: algo overview

1 Transform the 4D-Var in a sequence of quadratic minimization
problems

2 Increments δx(k)
0 are min. of functions J (k) defined by

J [δx0] =
1
2
‖δx0 − [xb − x0]‖2B−1 +

1
2
‖Hδx0 − d‖2R−1

3 Perform update

x(k+1)(t0) = x(k)(t0) + δx(k)
0 .
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Inner minimization

Minimizing

J [δx0] =
1
2
‖δx0 − [xb − x0]‖2B−1 +

1
2
‖Hδx0 − d‖2R−1

amounts to solve

(B−1 + HTR−1H)δx0 = B−1(xb − x0) + HTR−1d.

Exact solution writes

xb − x0 +
(
B−1 + HTR−1H

)−1
HTR−1

(
d−H(xb − x0)

)
,

or equivalently (using the S-M-Woodbury formula)

xb − x0 + BHT
(
R + HBHT

)−1
(
d−H(xb − x0)

)
.
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Dual formulation : PSAS

1 Very popular when few observations compared to model
variables. Stimulated a lot of discussion in the Ocean and
Atmosphere communities

2 Relies on

xb − x0 + BHT
(
R + HBHT

)−1
(
d−H(xb − x0)

)
3 Iteratively solve(

I + R−1HBHT
)
w = R−1(d−H(xb − x0)) for w

4 Set
δx0 = xb − x0 + BHTw
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Motivation : PSAS and CG-like algorithm

1 CG minimizes the Incremental 4D-Var function during its
iterations. It minimizes a quadratic approximation of the non
quadratic function : Gauss-Newton in the model space.

2 PSAS does not minimize the Incremental 4D-Var function
during its iterations but works in the observation space.

Our goal : put the advantages of both approaches together in a
Trust-Region framework, to guarantee convergence:

Keeping the variational property, to get the so-called Cauchy
decrease even when iterations are truncated.

Being computationally efficient whenever the number of
observations is significantly smaller than the size of the state
vector.

Getting global convergence in the observation space !
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CG-like algorithm : assumptions 1

1 Suppose the CG algorithm is applied to solve the Inc-4D using
a preconditioning matrix F

2 Suppose there exists Gm×m such that

FHT = BHTG

3 For ”exact” preconditioners

(
B−1 + HTR−1H

)−1
HT = BHT

(
I + R−1HBHT

)−1
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Preconditioned CG on Incremental 4D-Var cost function

Initialization steps

Loop: WHILE

1 qi−1 = Api−1

2 αi−1 = rT
i−1zi−1 /qT

i−1pi−1

3 vi = vi−1 + αi−1pi−1

4 ri = ri−1 + αi−1qi−1

5 zi = Fri

6 βi = rT
i zi / rT

i−1zi−1

7 pi = −zi + βipi−1

Initialization steps

Loop: WHILE

1 qi−1 =
(HTR−1H + B−1)pi−1

2 αi−1 = rT
i−1zi−1 /qT

i−1pi−1

3 vi = vi−1 + αi−1pi−1

4 ri = ri−1 + αi−1qi−1

5 zi = Fri

6 βi = rT
i zi / rT

i−1zi−1

7 pi = −zi + βipi−1

Gurol, Toint, Tshimanga, Weaver Data Assimilation: concept and some algorithms



Introduction
Reduced space Krylov methods

Acceleration techniques for nonlinear-least squares (optional)

Working in the observation space
Implementation and numerical experimentation

An useful observation

Theorem

Suppose that

1 BHTG = FHT.

2 v0 = xb − x0.

→ vectors r̂i, p̂i, v̂i, ẑi and q̂i such that

ri = HTr̂i,

pi = BHTp̂i,

vi = v0 + BHTv̂i,

zi = BHTẑi,

qi = HTq̂i

Gurol, Toint, Tshimanga, Weaver Data Assimilation: concept and some algorithms



Introduction
Reduced space Krylov methods

Acceleration techniques for nonlinear-least squares (optional)

Working in the observation space
Implementation and numerical experimentation

Preconditioned CG on Incremental 4D-Var cost function
(bis)

Initialization steps

given v0; r0 = (HTR−1H + B−1)v0 − b, . . .

Loop: WHILE

1 HTq̂i−1 = HT(R−1HB−1HT + Im)p̂i−1

2 αi−1 = rT
i−1zi−1 / q̂T

i−1p̂i−1

3 BHTv̂i = BHT(vi−1 + αi−1p̂i−1)
4 HTr̂i = HT(ri−1 + αi−1q̂i−1)
5 BHTẑi = FHTr̂i = BHTGr̂i

6 βi = (rT
i zi / rT

i−1zi−1)
7 BHTp̂i = BHT(−ẑi + βip̂i−1)
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Restricted PCG (version 1)

Initialization steps

given v0; r0 = (HTR−1H + B−1)v0 − b, . . .

Loop: WHILE

1 q̂i−1 = (Im + R−1HB−1HT)p̂i−1

2 αi−1 = r̂T
i−1HBHT ẑi−1 / q̂T

i−1HBHT p̂i−1

3 v̂i = v̂i−1 + αi−1p̂i−1

4 r̂i = r̂i−1 + αi−1q̂i−1

5 ẑi = FHTr̂i = Gr̂i

6 βi = r̂T
i HBHT ẑi / r̂T

i−1HBHT ẑi−1

7 p̂i = −ẑi + βip̂i−1
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More transformations

1 Consider w and t defined by

wi = HBHTẑi and ti = HBHTp̂i

2 From Restricted PCG (version 1)

ti =
{
−w0 if i = 0,
−wi + βiti−1 if i > 0,

3 Use these relations into Restricted PCG (version 1)

4 Transform Restricted PCG (version 1) into Restricted PCG
(version 2)
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Restricted PCG (version 2)

Initialization steps

Loop: WHILE

1 q̂i−1 = R−1ti−1 + p̂i−1

2 αi−1 = wT
i−1r̂i−1 / q̂T

i−1ti−1

3 v̂i = v̂i−1 + αi−1p̂i−1

4 r̂i = r̂i−1 + αi−1q̂i−1

5 ẑi = Gr̂i

6 wi = HBHTẑi

7 βi = wT
i r̂i /wT

i−1r̂i−1

8 p̂i = −ẑi + βip̂i−1

9 ti = −wi + βiti−1
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Comments

We summarize here the main features of RPCG:

It amounts to solve the observation system with the right
inner-product HBHT

It is mathematically equivalent to PCG in the sense that, in
exact arithmetic, both algorithms generate exactly the same
iterates.

It contains a single occurrence of the matrix-vector products
by B, H, HT and R−1 per iteration.
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Loss (and recovery) of orthogonality

1 The modified (G-S) orthogonalization scheme writes

ri ←
i−1∏
j=1

(
In −

rjrT
j

rT
j Frj

)
ri.

2 We suggest the following re-orthogonalization scheme

r̂i ←
i−1∏
j=1

(
Im −

r̂jwT
j

r̂T
j wj

)
r̂i. (1)

3 Note that the total number of pairs to be stored can be
reduced if selective reorthogonalization is performed.
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Loss (and recovery) of orthogonality : experiment
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Figure: Orthogonalization issues.
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Experiments
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Conclusions

Have proposed a reformulation of the PCG for

(B−1 + HTR−1H)δx0 = B−1(xb − x0) + HTR−1d

The RPCG is mathematically equivalent to PCG

Exploits the fact that all vectors lie in a subspace of IRm

Cheaper than CG (memory and computation)

Some numerical experiments shown
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Perpectives

Perpectives

Behaviour in presence of round-off error

Find efficient preconditioners F such that

FHT = BHTG

Implement RPCG in a real life data assimilation system :
RTRA project
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Towards further reduction of the cost

We have shown that RPCG allows memory and computational cost
reduction whenever the number of observation is smaller than the size of
the control vector

Similar results are possible with other Krylov methods (GMRES, FOM, ...)

The question now is: can we reduce cost further ?

Possible answer: inexact (cheap) matrix-vector products (truncated B−1,
R−1, simplified models, ...)

(Simoncini and Szyld, van den Eshop and Sleipen, Giraud, Gratton and
Langou, ...)

→ But, there is a need of a stable modification of RPCG.
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The Arnoldi process

Define (in the full space) A = In +BHTR−1H and set

K = BHT , L = R−1H

the successive nested Krylov subspaces generated by the sequence

b, (γIn +KTL)b, (γIn +KTL)2b, (γIn +KTL)3b, . . . (2)

or, equivalently, by

b, (KTL)b, (KTL)2b, (KTL)3b, . . . (3)

The Arnoldi process generates an orthonormal basis of each of the these
subspaces, i.e. a set of vectors {vi}k+1

i=1 with v1 = b/‖b‖ such that, after k
steps,

KTLVk = Vk+1Hk, (4)

where Vk ≡ [v1, . . . , vk] and Hk is a (k + 1)× k upper-Hessenberg matrix.
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Related methods: GMRES, MINRES, FOM, CG

Depending on how the matrix Hk is exploited to solve the problem we have

The GMRES algorithm (≡ MINRES for KT = L)

yk = arg min
y
‖Hky − β1e1‖, sk = Vkyk

The FOM algorithm (≡ CG for KT = L)

H�
k y = β1e1, sk = Vkyk

here, H�
k is the leading k × k submatrix of Hk.

GMRES (FOM) use long recurrences while MINRES (CG) use short ones.

Let

rk = (I+KTK)Vkyk− b and fk =
1

2
yTk V

T
k (γI+KTK)Vkyk− bTVkyk

→ GMRES and MINRES monotionically minimize rk while FOM and CG
monotically minimize fk along the iterations.
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Range-space GMRES and FOM (RSGMR and RSFOM)

As CG may be rewritten in the observation space to yield RPCG, algorithms
GMRES, MINRES and FOM may be rewritten to yields similar variants.

Why a range-space GMRES and FOM (RSGMR and RSFOM)?

The FOM setting provides better accuracy and is much better suited to
use inexact matrix-vector products.

The cost of storing an orthonormal basis of the successive Krylov spaces
is much lower for range-space methods than for full-space ones.
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Exact and inexact products: FOM vs CG

Is CG a reasonable framework for inexact products ?

Comparing ‖rk‖/(‖A‖‖s∗‖) for FOM, CG with reortho and CG for exact (left) and inexact (right) products

(τ = 10−9, κ ≈ 106)
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Stability and convergence with inexact product

We want to bound ‖rk‖ in the context of Arnoldi process under inexact
matrix-vector products.

Some reasons to consider this question

The inexact nature of computer arithmetic implies that such such errors
are inevitable

To allow matrix-vector products in an inexact but cheaper form

Note that

the analysis is for GMRES but that in the context of FOM similar
conclusions will hold.

standard CG and MINRES are no longer equivalent to FOM and GMRES
in the context of unsymmetric perturbations.
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Two error models

Assume that each iteration i product by K, K or L is inexact, that is

Li = L+ EL,i, KT
i = KT + EKT ,i, and Ki = K + EK,i

for some errors EL,i, EKT ,i, and EK,i. Consider two error models to
describe the inaccuracy in the matrix-vector products.

Backward:

‖EK,i+1‖ ≤ τK,i+1‖K‖,
‖EKT ,i+1‖ ≤ τKT ,i+1‖K‖,
‖EL,i+1‖ ≤ τL,i+1‖L‖,
‖EKT ,∗‖ ≤ τ∗‖K‖

Forward:

‖EK,i+1 un‖ ≤ τK,i+1‖Kun‖,
‖EKT ,i+1 um‖ ≤ τKT ,i+1‖Kum‖
‖EL,i+1 un‖ ≤ τL,i+1‖Lun‖
‖EKT ,∗ um‖ ≤ τ∗‖Kum‖
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Results for the backward error model

Define

qk = Hkyk − βe1, G = max[‖K‖, ‖L‖], ωk = max
i,...,k

‖v̂i‖

κ(K) = condition number of K

(... after some analysis ...)

Theorem

Assume the backward-error model. Then

‖rk‖ ≤
p

2(k + 1) ‖qk‖+ ‖K‖ωk
»
τ∗γ
√
k‖yk‖+ 4G2Pk

i=1 |[yk]i| τi
–

≤
p

2(k + 1)
ˆ
‖qk‖+ τmaxκ(K) (γ + 4G2)‖yk‖

˜
.

where τmax = max[τ1, . . . , τk].
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Results for the forward error model

Theorem

Assume the forward-error model. Then

‖rk‖ ≤
p

2(k + 1) ‖qk‖+
√

2

»
τ∗γ
√
k‖yk‖+ 4G ‖K‖

Pk
i=1 |[yk]i| τi

–
≤

p
2(k + 1)

»
‖qk‖+ τmax (γ + 4G ‖K‖)‖yk‖

–
.

Note in both sets of bounds:

The first of these bounds allows for variable accuray requirements

special role of τ∗.
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Error models (1)

Is the error model important? (ε = 10−5, κ ≈ 102)

Backward error model Forward error model

(normalized ‖rk‖, normalized ‖qk‖, accuracy threshold τ )

Gurol, Toint, Tshimanga, Weaver Data Assimilation: concept and some algorithms



Introduction
Reduced space Krylov methods

Acceleration techniques for nonlinear-least squares (optional)

Working in the observation space
Implementation and numerical experimentation

Error models (2)

Yes, it can definitely make the difference (ε = 10−5, κ ≈ 109)

Backward error model Forward error model

(normalized ‖rk‖, normalized ‖qk‖, accuracy threshold τ )
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Fixed vs variable accuracy threshold (1)

Can we use variable accuracy thresholds efficiently? (ε = 10−5, κ ≈ 102)

Fixed τ τ ≈ 1/‖qk‖

(normalized ‖rk‖, normalized ‖qk‖, accuracy threshold τ )
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Fixed vs variable accuracy threshold (2)

Maybe..., not obvious. (ε = 10−5, κ ≈ 102)

Fixed τ τ ≈ 1/‖qk‖

(normalized ‖rk‖, normalized ‖qk‖, accuracy threshold τ )
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Conclusions

Range space methods may be designed to gain from low rank

Further gains may be obtained from inexact products

Formal bounds on the residual norm are available in this context

Forward error modelling gives more flexibility than backward

True application: a real challenge (but we are working on it!)
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Linear systems in sequence

Let

A: symmetric and positive definite matrix of order n

b1, . . . , br ∈ Rn: right-hand sides available in sequence

Solve in sequence:

Ax = b1, Ax = b2, . . . by an iterative method (Krylov solvers)

Preconditioning each system using information obtained during the
solution of the previous system(s)

→ Extend the idea to the case where A varies along the iterations
(Gauss-Newton method – variational ocean data assimilation)
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Preconditioning technique

Solve Ax = b1 and extract information info1

Solve Ax = b2 using info1 to precondition and extract information info2

Solve Ax = b3 using info2 (and possibly info1) to precondition and
extract information info3

. . .

where infok contains (in our case):

Descent directions pi

Ritz pairs (θi, zi) (approximations to eigenpairs)

produced by a conjugate gradient algorithm (or an equivalent Lanczos process)
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Conjugate gradient (CG) method

→ Solves minx∈Rn
1
2
xTAx− bTx or equivalently Ax = b

Given x0, set r0 ← Ax0 − b, p0 ← −r0, k ← 1

Loop on k

αk−1 ←
rTk−1rk−1

pk−1
TApk−1

Compute the step length

xk ← xk−1 + αk−1pk−1 Update the iterate

rk ← rk−1 + αk−1Apk−1 Update the residual

βk ← rTk rk
rTk−1rk−1

Ensure A-conjugate directions

pk ← −rk + βkpk−1 Update the descent direction
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Elementary properties of the LMP

H =
h
In − S(STAS)−1STA

i
M
h
In −AS(STAS)−1ST

i
+ S(STAS)−1ST

Proposition

H is symmetric and positive definite

H is invariant under a change of basis for the columns of S
(S ← Z = SX, X nonsingular)

H = A−1 if S is of order n (k = n)

(Possibly cheap) factored form: H = GGT with

G = L − SR−1R−TSTAL + SR−1X−TSTL−T

where

M = LLT (L of order n)
STAS = RTR (R of order k)
STL−TL−1S = XTX (X of order k)
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Connection with the existing L-BFGS form

(Let M = In)

Using Y = AS and letting B = Y TS = STAS we have:

H =
h
In − SB−1Y T

i h
In − Y B−1ST

i
+ SB−1ST

Letting R = triu(B) and D = diag(B), the classical L-BFGS update

reads [Gilbert, Nocedal, 1993], [Byrd, Nocedal, Schnabel, 1994]:

h
In − SR−TY T

i h
In − Y R−1ST

i
+ SR−TDR−1ST

This last formula is not invariant under transformations of S
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First-level preconditioner

 
f(x) =

1

2
||ρ(x)||22 =

1

2
||x− xb||2B−1 +

1

2

NX
j=0

||Hj(Mj(x))− yj ||2R−1
j

!

At the background xb:

JT (xb)J(xb) = B−1 +

NX
j=0

MT
j HT

j R
−1
j HjMj

Choosing M = B1/2(B1/2)T as first-level preconditioner yields:

(B1/2)TJT (xb)J(xb)B
1/2 = In +

NX
j=0

(B1/2)TMT
j HT

j R
−1
j HjMjB

1/2 (= A0)

→ Large amount of eigenvalues already clustered at 1
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The framework

[Tshimanga, Gratton, Weaver, Sartenaer, QJRMS, 2007]

System with 107 degrees of freedom

A realistic outer/inner loop configuration is considered:

3 outer loops of Gauss-Newton (linearization)

10 inner loops of conjugate gradient (on each of the 3 systems)

The performance is measured by the value of the quadratic cost function

The convergence of Ritz pairs is measured by the backward errors:

‖Azi − θizi‖
‖A‖‖zi‖
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Unpreconditioned runs
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→ The Ritz values for the three matrices are close together

→ The extremal Ritz pairs have the smallest backward errors (better approx.)
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Preconditioned runs

We consider the three forms:

Quasi-Newton LMP

Inexact spectral-LMP

Ritz-LMP

In order to

Analyse, for each, the effect of increasing the number of vectors in S
(second and third systems)

Compare their performance
(second system)

To this aim, an unpreconditioned conjugate gradient is run on the first system
to produce 10 vectors from which 2, 6 and 10 relevant ones are selected:

Ritz-vectors are selected according to their convergence

Descent directions are selected as the latest ones
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Quasi-Newton LMP
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→ Positive impact of an increase in the number of vectors in S
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Inexact spectral-LMP
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→ Negative impact of an increase in the number of vectors in S

(Ritz pairs may be bad eigenpairs approximation)
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Ritz-LMP
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→ Positive and faster impact of an increase in the number of vectors in S
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Ranking LMP (2 vectors)
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→ Inexact spectral-LMP ≡ Ritz-LMP – Quasi-Newton LMP is worse
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Ranking LMP (6 vectors)
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→ Ritz-LMP is the best – Inexact spectral-LMP deteriorates
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Ranking LMP (10 vectors)
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→ Quasi-Newton LMP ≡ Ritz-LMP

→ Inexact spectral-LMP even worse than no preconditioning
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What about the first system (A0)?

Appropriate starting point for CG

 LMP again!

→ Illustration on a one-dimensional shallow water model
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One-dimensional shallow water model

→ Estimate the velocity and geopotential of a fluid flow over an obstacle:

1D-grid with 250 mesh-points

x, xb (background) ∈ R500

yj (observations) ∈ R80

→ Outer/inner loop configuration:

3 outer loops of Gauss-Newton (linearization)

5 inner loops of conjugate gradient (on each of the 3 systems)
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Gauss-Newton (with x0
0 = xb)
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→ Computational cost dominated by 15 matrix-vector products
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Improving the starting point x0
0

Physical considerations:

The ocean and the atmosphere exhibit an attractor

Most of the variability can be explained in the “attractor subspace”
(of low dimension r)

→ Minimize first in this subspace (of basis L)
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Empirical Orthogonal Functions (EOFs)

Construction of L:

Let x1, . . . , xp ∈ Rn be a set of state vectors (p = 200)

Build C = 1
p−1

Pp
i=1(xi − x̄)(xi − x̄)T

Compute the eigenvectors of C (EOFs)

Store r eigenvectors corresponding to the largest eigenvalues

→ Already used in the reduced Kalman filters (SEEK filter)
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Choice for r

Select r such that:

Pr
i=1 λiPn
i=1 λi

≥ 0.8

(λi ↘)

For the shallow water model
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→ The five first EOFs are computed (r = 5)
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Ritz-Galerkin starting point

The solution of the first system in the subspace spanned by L:

x0
0 = xb + L(LTA0L)−1LT b0

is called the Ritz-Galerkin starting point

is used as starting point in the CG for the first system (A0x = b0)

→ Computational cost dominated by r = 5 matrix-vector products
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First improvement
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Second improvement
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(Same H for the 3 systems)
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Thank you for your attention !
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